许多最新的自然语言任务方法都建立在大型语言模型的非凡能力上。大型语言模型可以执行内在的学习,他们可以从几个任务演示中学习新任务,而无需任何参数更新。这项工作研究了对新自然语言任务的数据集创建数据集的含义。与最近的文化学习方法背道而驰,我们制定了一个注释效率的两步框架:选择性注释,选择一个示例池,以提前从未标记的数据中从未标记的数据中进行注释,然后及时检索从注释的池中检索任务示例测试时间。基于此框架,我们提出了一种无监督的,基于图的选择性注释方法VOKE-K,以选择各种代表性的示例进行注释。在10个数据集上进行了广泛的实验(涵盖分类,常识性推理,对话和文本/代码生成)表明,我们的选择性注释方法通过很大的利润提高了任务性能。与随机选择示例进行注释相比,Pote-K平均在注释预算下获得了12.9%/11.4%的相对增益。与最先进的监督登录方法相比,它的性能相似,而在10个任务中的注释成本降低了10-100倍。我们在各种情况下进一步分析了框架的有效性:具有不同大小的语言模型,替代选择性注释方法以及有测试数据域移动的情况。我们希望我们的研究将作为数据注释的基础,因为大型语言模型越来越多地应用于新任务。我们的代码可在https://github.com/hkunlp/icl-selactive-annotation上找到。
translated by 谷歌翻译
通常,对于基于深网的良好性能文本检测器获得良好的培训和长期培训计算是必要的。在本文中,我们提出了一个新的场景文本检测网络(称为狂热者),其快速收敛速度和准确的文本本地化。所提出的粉丝是基于变压器特征学习和标准化的傅立叶描述符建模的端到端文本检测器,在该图案中,傅立叶描述符建议网络和迭代文本解码网络旨在有效,准确地识别文本建议。此外,还提出了一个密集的匹配策略和精心设计的损失函数,以优化网络性能。进行了广泛的实验,以证明所提出的粉丝可以通过更少的训练时期和没有预训练来实现SOTA性能。当我们引入其他数据进行预训练时,提出的粉丝可以在MSRATD500,CTW1500和TotalText上实现SOTA性能。消融实验还验证了我们贡献的有效性。
translated by 谷歌翻译
二进制神经网络利用$标志$函数来二进制真实值,其非衍生属性不可避免地会在反向传播期间带来巨大的梯度错误。尽管已经提出了许多手工设计的软功能来近似梯度,但它们的机制尚不清楚,并且在二进制模型及其完整精确的对应物之间仍然存在巨大的性能差距。为了解决这个问题,我们建议将网络二进制作为二进制分类问题解决,并使用多层感知器(MLP)作为分类器。基于MLP的分类器理论上可以符合任何连续功能,并可以自适应地学习,以对网络进行二进制和反向流向梯度,而无需任何特定的软函数。通过这种观点,我们进一步证明,即使是简单的线性函数也可以胜过先前的复杂软函数。广泛的实验表明,所提出的方法在图像分类和人类姿势估计任务中产生令人惊讶的表现。具体而言,我们在ImageNet数据集上实现了Resnet-34的65.7%的TOP-1准确性,绝对提高了2.8%。在评估具有挑战性的Microsoft可可关键数据集时,提出的方法使二进制网络能够首次获得60.6的地图,并与一些完整的方法相当。
translated by 谷歌翻译
无数据量化是一项将神经网络压缩到低位的任务,而无需访问原始培训数据。大多数现有的无数据量化方法导致由于不准确的激活剪辑范围和量化误差而导致严重的性能降解,尤其是对于低位宽度。在本文中,我们提出了一种简单而有效的无数据量化方法,具有准确的激活剪辑和自适应批准化。精确的激活剪辑(AAC)通过利用完全精确模型的准确激活信息来提高模型的准确性。自适应批准归一化首先建议通过自适应更新批处理层次来解决分布更改中的量化误差。广泛的实验表明,所提出的无数据量化方法可以产生令人惊讶的性能,在Imagenet数据集上达到RESNET18的64.33%的TOP-1准确性,绝对改进的3.7%优于现有的最新方法。
translated by 谷歌翻译
最近的视频文本发现方法通常需要三个阶段的管道,即检测单个图像中的文本,识别本地化文本,跟踪文本流以及后处理以生成最终结果。这些方法通常遵循按匹配范式跟踪并开发复杂的管道。在本文中,植根于变压器序列建模,我们提出了一个简单但有效的端到端视频文本检测,跟踪和识别框架(TransDert)。转码主要包括两个优点:1)与相邻帧中的显式匹配范式不同,transdetr轨道和不同的匹配范围,并通过长期时间序列(超过7帧)隐含的不同查询所谓的文本查询隐式识别每个文本。 2)Transdetr是第一个端到端可训练的视频文本斑点框架,该框架同时介绍了三个子任务(例如,文本检测,跟踪,识别)。进行了四个视频文本数据集(即ICDAR2013视频,ICDAR2015视频,Minetto和YouTube视频文本)中的广泛实验,以证明Transdetr在预先的性能中达到了最大的表现,并且在视频文本发现任务方面的提高约为8.0%。 。可以在https://github.com/weijiawu/transdetr上找到Transdet的代码。
translated by 谷歌翻译
语义表示对于视频文本跟踪(VTT)任务具有很大的益处,该任务需要同时对视频中的视频进行分类,检测和跟踪文本。大多数现有方法通过在连续帧中的外观相似性来解决此任务,同时忽略丰富的语义功能。在本文中,我们探讨了具有对语义和视觉表示的对比学习的强大追踪视频文本。相应地,我们介绍了一个具有语义和视觉表示(SVREP)的端到端视频文本跟踪器,它通过在视频序列中利用不同文本之间的视觉和语义关系来检测和跟踪文本。此外,通过轻量级架构,SVREP在保持竞争推断速度的同时实现最先进的性能。具体而言,使用Reset-18的骨干,SVREP实现了$ \ textbf {65.9 \%} $的$ \ textbf {65.9 \%} $,以$ \ textbf {16.7} $ fps,在ICDAR2015上运行(视频)与$ \ textbf {8.6 \%} $提高的数据集比以前的最先进的方法。
translated by 谷歌翻译
大多数现有的视频文本发现基准测试专注于评估单一语言和具有有限数据的场景。在这项工作中,我们引入了大规模的双语,开放世界视频文本基准数据集(BovText)。 BovText有四个功能。首先,我们提供2,000多个具有超过1,75万多帧的视频,比现有最大数据集大25倍,其中包含录像中的附带文本。其次,我们的数据集涵盖了具有多种各种场景的30多个开放类别,例如Life VLog,驾驶,电影等。第三,为不同的代表提供了丰富的文本类型注释(即标题,标题或场景文本)视频中的意义。第四,BOVTEXT提供双语文本注释,以促进多种文化的生活和沟通。此外,我们提出了一个与变压器的端到端视频文本发现框架,被称为TransVtspotter,它通过简单但高效的关注的查询密钥机制解决了视频中的多东方文本。它将来自前一个帧的对象特征应用于当前帧的跟踪查询,并引入旋转角度预测以适合多大学实例。在ICDAR2015(视频)上,Transvtspotter以44.1%的Mota,9 FPS实现最先进的性能。 DataSet和TransVtspotter的代码可以在GitHub中找到:COM = Weijiawu = BovText和GitHub:Com = Weijiawu = Transvtspotter。
translated by 谷歌翻译
An oft-cited open problem of federated learning is the existence of data heterogeneity at the clients. One pathway to understanding the drastic accuracy drop in federated learning is by scrutinizing the behavior of the clients' deep models on data with different levels of "difficulty", which has been left unaddressed. In this paper, we investigate a different and rarely studied dimension of FL: ordered learning. Specifically, we aim to investigate how ordered learning principles can contribute to alleviating the heterogeneity effects in FL. We present theoretical analysis and conduct extensive empirical studies on the efficacy of orderings spanning three kinds of learning: curriculum, anti-curriculum, and random curriculum. We find that curriculum learning largely alleviates non-IIDness. Interestingly, the more disparate the data distributions across clients the more they benefit from ordered learning. We provide analysis explaining this phenomenon, specifically indicating how curriculum training appears to make the objective landscape progressively less convex, suggesting fast converging iterations at the beginning of the training procedure. We derive quantitative results of convergence for both convex and nonconvex objectives by modeling the curriculum training on federated devices as local SGD with locally biased stochastic gradients. Also, inspired by ordered learning, we propose a novel client selection technique that benefits from the real-world disparity in the clients. Our proposed approach to client selection has a synergic effect when applied together with ordered learning in FL.
translated by 谷歌翻译
Large language models can perform new tasks in a zero-shot fashion, given natural language prompts that specify the desired behavior. Such prompts are typically hand engineered, but can also be learned with gradient-based methods from labeled data. However, it is underexplored what factors make the prompts effective, especially when the prompts are natural language. In this paper, we investigate common attributes shared by effective prompts. We first propose a human readable prompt tuning method (F LUENT P ROMPT) based on Langevin dynamics that incorporates a fluency constraint to find a diverse distribution of effective and fluent prompts. Our analysis reveals that effective prompts are topically related to the task domain and calibrate the prior probability of label words. Based on these findings, we also propose a method for generating prompts using only unlabeled data, outperforming strong baselines by an average of 7.0% accuracy across three tasks.
translated by 谷歌翻译
We introduce INSTRUCTOR, a new method for computing text embeddings given task instructions: every text input is embedded together with instructions explaining the use case (e.g., task and domain descriptions). Unlike encoders from prior work that are more specialized, INSTRUCTOR is a single embedder that can generate text embeddings tailored to different downstream tasks and domains, without any further training. We first annotate instructions for 330 diverse tasks and train INSTRUCTOR on this multitask mixture with a contrastive loss. We evaluate INSTRUCTOR on 70 embedding evaluation tasks (66 of which are unseen during training), ranging from classification and information retrieval to semantic textual similarity and text generation evaluation. INSTRUCTOR, while having an order of magnitude fewer parameters than the previous best model, achieves state-of-the-art performance, with an average improvement of 3.4% compared to the previous best results on the 70 diverse datasets. Our analysis suggests that INSTRUCTOR is robust to changes in instructions, and that instruction finetuning mitigates the challenge of training a single model on diverse datasets.
translated by 谷歌翻译